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SUMMARY

The profiles and thicknesses of normal shock waves in argon at Mach

numbers of 1.335, 1.454, 1.576, and 1.713 were determined experimentally

by means of a free-molecule probe whose equilibrium temperature is related

by kinetic theory to the local flow properties and their gradients.

Comparisons were made between the experimental shock profiles and

the theoretical profiles calculated from the Navier-Stokes equations, the

Grad 13-moment equations, and the Burnett equations. New, very accurate

numerical integrations of the Burnett equations were obtained for this

purpose with results quite different from those found by Zoller, to whom

the solution of this problem is frequently attributed.

The experimental shock profiles were predicted with approximately

equal success by the Navier-Stokes and Burnett theories, while the

13-moment method was definitely less satisfactory. A surprising feature

of the theoretical results is the relatively small difference in predic-

tions between the Navier-Stokes and Burnett theories in the present range

of shock strengths and the contrastingly large difference between predic-

tions of Burnett and the 13-moment theories. It is concluded that the

Navier-Stokes equations are correct for weak shocks and that within the

present shock strength range the Burnett equations make no improvement

which merits the trouble of solving them. For shocks of noticeably

greater strength, say with a shock Mach number of more than 2.5, it

remains fundamentally doubtful that any of these theories can be correct.

INTRODUCTION

A new experimental method for measuring shock-wave structure involving

the use of a free-molecule probe was introduced by Sherman in reference I.

He made his measurements in a low-density wind tunnel_ where the shock

waves produced were thick enough to permit local measurements within them

while the probe, being small compared with the mean free path, did not

disturb the macroscopic flow pattern. This technique enabled him to



obtain information on the shape and thickness o_7the shock profiles which
could be comparedin a detailed fashion with th,.• predictions of several
theories for shock structure.

The free-molecule probe used by Shermanwas essentially a cylindrical
wire whose temperature could be measured. The wire was stretched across

the jet of the wind tunnel and was mounted on a mechanism which traversed

it through the normal shock waves formed at the open end of a hollow con-

ical shock holder. The data obtained consisted of point-by-point profiles

giving the variation of wire equilibrium temperature with position through

the shock waves.

Experimental wire-temperature profiles wer,.• compsred with predictions

based on the Navier-Stokes equations_ the Grad [_5-moment equations_ and a

kinetic-theory method of Mott-Smith. The Burne_t equations were not used

by Sherman because of the difficulty in solving them for the shock-wave

boundary-value problem.

Sherman's experimental data were much bett,_.r predicted by the Navier-

Stokes equations than by the more complex kineti_c-theory methods. However,

the comparison among the various theories was s_>mewhat clouded by two

facts: (!) Most of the experimental data was obtained for diatomic gases,

whereas the kinetic theory has been fully develc_ped only for monatomic

gases, and (2) the shocks tested were too strong, falling outside the range

of Mach numbers for which a single-valued shock-transition solution of the

15-moment equations exists.

In an attempt to remove the two objections listed above, the meas-

uring technique of reference i was applied to shock waves in argon at

Mach numbers of 1.335, 1.454, 1.576, and 1.713. On the basis of the

experimental accuracy obtained by Sherman and tile magnitude and character

of the differences in predictions between the Navier-Stokes and 13-moment

theories, it was hoped that these new experimen-;s would be capable of

discriminating clearly between the competing th,._ories. The present report

describes the new measurements and rounds out tile comparison with theory

by including high-speed computing-machine solut_.ons of the Burnett

equat ions.

This investigation was conducted at the Un:.versity of California

under the sponsorship and with the financial as_istance of the National

Advisory Committee for Aeronautics. The author:_ are also grateful to

the Naval Research Laboratory, where the numeric:al integrations of the

Burnett equations were performed.
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SYMBOLS
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a

b_c

C

E

f

Ho,HI,H2,H}

hc

I0(s2/21

Ii(s2/2)

i

i,j

K

k

L.

L 1

M1

m

n

P

P

Pi

Zoller's shock-strength parameter

coefficients in equation (A5)

dimensionless peculiar molecular velocity

specific internal energy, cm2/sec 2

molecular velocity-distribution function

Bell-Schaaf speed-ratio functions

convective heat-transfer coefficient for free-

molecule flow

modified Bessel function of first kind, order zero,

and argument s2/2

modified Bessel function of first kind, order one,

and argument s2/2

electric current, amp

indexes, used as subscript (i,j = 1,2,3)

thermal conductivity of wire, ergs/cm sec OK

thermal conductivity of gas, ergs/cm sec OK

reference length, p_/pu

reference length, _pu (used in table I)

half length of wire

shock Mach number

mass flow constant, equations (BS), gm/cm 2 sec

number density of gas molecules, cm-5

momentum constant, equations (B3), dynes/cm 2

thermodynamic pressure, dynes/cm 2

impact pressure, dynes/cm 2



Pij

Pxx'Pyy'Pzz

Pxx'

Pxx"

Po

Q

qi

qx

qx '

qx"

R

R'

(R')o

(R')w

RI,R2

r

: _/V_T

t -T_ 1
To

Taw
taw -

To

1

components of viscous-stress tensor, e.g.j Pxx_

Pyy' Pzz' dynes/cm2

components of excess viscous-pressure tensor,

d_es/cm2

Navier-Stokes part of Pyx' dynes/cm2

Burnett part of Pxx_ dy_Les/cm2

reservoir stagnation pre_ sure_ dynes/cm 2

energy constant_ equation,s (B3)j ergs/cm 2 sec

heat-flux vector componert, e.g., qx _ ergs/cm 2 sec

heat flux, ergs/cm 2 sec

Navier-Stokes part of q_L

Burnett part of qx

gas constant for argon_ ergs/cm OK

resistance of wire per u_it length_ ohms/cm

resistance of wire at te_0erature To, ohms

resistance of wire at temperature Tw, ohms

functions defined in equ&tions (BII)

radius of wire, cm

molecular speed ratio



T

Taw

To

T w

T.

u

u

v

v v

w

x

Y

z

cu2

?,

%(Tw)

E

C o

gas temperature, OK

adiabatic wire equilibrium temperature, OK

stagnation (room) temperature, OK

wire equilibrium temperature

2
reference temperature, °Kj _ T o

7 + i

gas velocity, cm/sec

mean flow velocity, cm/sec

dimensionless velocity, equations (BS)

boundary value of v

normalized, dimensionless velocity, equations (BI8)

distance along flow, cm

Grad's dimensionless distance, equation (I)

Zoller's dimensionless distance, equations (BS)

thermal accon_nodation coefficient of wire

temperature coefficient of resistance, OK-i

specific-heats ratio

maximum-slope shock-wave thickness, based on veloc-

ity profile and measured in units of x and y,

respectively

maximum-slope shock-wave thickness based on wire-

temperature profile

Grad's shock-strength parameter, equation (2)

radiant emissivity of wire at temperature T o
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h

V

"
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D

T

T1,,

radiant emissivity of wi_e at temperature Tw

dimensionless Navier-Sto}es stress, equations (B8)

dimensionless Burnett stress, equations (B8)

initial stress perturbation amplitude, equations (BI4)

temperature perturbation_ equations (BIS)

initial temperature pertlrbation amplitude, equa-

tions (BI4)

Burnett heat-flux coefficients

Maxwellian mean free patl. ahead of shock, cm

root of characteristic ecuation (BI6)

viscosity, poises

viscosity at reference t_mperature T., poises

viscosity ahead of shock, poises

boundary value index, equations (BI2)

absolute molecular velocity, cm/sec

ith component of

dimensionless Navier-Sto _es heat flux, equations (BS)

dimensionless Burnett he_t flux, equations (BS)

initial heat-flux pertur-_ation amplitude,

equations (BI4)

gas density, gm/cm 3

Stephan-Boltzmann constant, ergs/em 2 see OK

dimensionless temperatur_ variable, equations (B8)

boundary value of

velocity perturbation, eluations (BI_)
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initial velocity perturbation amplitude, equa-

tions (BI4)

exponent of viscosity-temperature law

Burnett stress coefficients, used in appendix B

EXPER I_D_TAL APPARATUS

Mach 1.5 Nozzle

The experi_ents were performed in the open-jet, continuous-flow,

low-density wind tunnel at the University of California, Berkeley. This

wind tunnel is described in reference 2. For the purposes of the present

experiments a nozzle was designed and built to give an exit Mach number

of 1.5 in a monatomic gas at design flow conditions. This proved to be

an extraordinary supersonic nozzle. Evidently, because the combination

of low exit Mach number and extremely thick nozzle boundary layers, the

nozzle is not subject to the formation of oblique shocks or sharp rare-

faction fans at the exit lip when the pressure in the test chamber is

raised or lowered from the exit staticpressure of the open jet. What

appears to happen instead is that a rise in test-chamber pressure at any

given stagnation-chamber pressure only produces a smooth increase in

boundary-layer thickness along the entire nozzle length. This in turn

yields an effective nozzle of smaller bore and area ratio than the orig-

inal but of equal contour smoothness. Lowering the chamber pressure just

reverses the effect. The outcome of this behavior is a great flexibility

of selection of Mach and Reynolds numbers, obtained by independent adjust-

ment of stagnation-ch_nber and test-chamber pressures, without sacrifice

of flow uniformity. This was exploited in the present experiments by

making all shock-wave surveys at approximately the same free-stream mean-

free-path length. The four shocks were then of roughly equal thickness

and could be surveyed with correspondingly equal accuracy. The nozzle

exit dim_eter was 7.91 inches, and the diameter of the isentropic core

of flow varied from 5 to 4 inches over the range of Mach numbers covered

here. _upact pressure surveys taken at the exit plane are shown in

figure i.

Nozzle Calibration

Because of the extreme _:.portance of an accurate detemination of

Mach n_._er for the present tests, the method of nozzle calibration was

very critical. Several different independent methods for determining

the Mach n_er were used, and the worth of the final calibration is

shown by the excellent agreement obtained among these methods.
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The instruments used were a 0.300-inch-diameter source-shaped impact

probe, corrected for viscous effects by the metilods of reference 3, and

a 0.300-inch-diameter static-pressure probe. Tile latter had 8 pressure

orifices equally spaced around its periphery at a cross section 13 inches

from the i0 ° conical tip and 13 inches upstream from the cross-stream

support. When the pressure orifices were positioned in the test region3

the tip of the probe protruded into the stagnation chamber so that tip

effect was avoided. The 13-inch length downstream of the pressure orifices

permitted the probe to be traversed throughout _he axial length of the

nozzle and minimized cross-stream support inter_erences. The static probe

was assumed to be free of viscous effects. Its diameter was small com-

pared with the nozzle throat diameter of approximately 6 inches. No

change in nozzle wall pressure was observed upol insertion or removal of

the probe, and excellent agreement was found between wall pressure and

probe pressure under conditions where the probe surveys indicated constant

static pressure across the jet.

The two local pressure measurements, impact Pi and static p, were

combined to determine the local Mach number fron the ratio pi/p. In

addition, the Mach number was determined from the ratios Pi/Po and

P/Po' where Po is the stagnation pressure, assuming an isentropic flow.

As a final check on the internal consistency of the Mach numbers

determined in the above fashion, the free-strean equilibrium temperature

of the free-molecule probe used for the shock-w_ve surveys was measured.

Although the probe was initially uncalibrated, in that its radiation

losses were unknown but significant, the probe _as extremely sensitive

to Mach number variation in the Mach number range of the tests. A smooth

correlation between probe equilibrium temperatures and Mach numbers deter-

mined from pressure measurements was essential for confidence in the

latter.

The final calibrated flow conditions used in the tests are listed

in table I. The Mach number values, cited to three decimal places, repre-

sent averages of the values obtained from the several methods. Individ-

ual values differed from these averages by less than i percent.

Shock Holder

A single shock holder, similar in design to those employed in the

tests of reference i, was used throughout the ;resent experiments. It

is shown in figure 2. The entry diameter was 3 inches, which is about

the dimension of the isentropic core of the nozzle flow at the lowest

Mach number M I = 1.335 (see fig. i). The shcck holder was slotted to

provide for motion of the wire probe downstream of the entry plane, but
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this provision turned out to be unnecessary since all the shock waves used

in the tests were slightly detached. An internal included angle of diver-

gence of 40 ° was selected for the shock holder, which represented a com-

promise between the estimated minimum internal angle required to allow for

boundary-layer growth within the shock holder and the maximum external

angle for an attached shock wave. These two conditions could not be met

simultaneously at the low Mach numbers of the tests, and therefore the

shock waves were slightly detached. However, the glow photographs of the

shock-holder operation (fig. 3) indicate that at least the central por-

tions of the shock waves were plane. The shock-detachment distance

decreased with increasing Hach number.

Free-Molecule-Flow Equilibrium-Temperature Probe

The 0.00025-inch-diameter tungsten resistance-wire probe described

in reference i was used for all the shock-wave measurements. A schematic

diagram of the resistance-wire instrument is shown in figure 4. In every

case the Knudsen number of the probe (the ratio of the mean free path in

the gas to the probe diameter) was greater than 50, which insured that

free-molecule-flow conditions always prevailed.

The wire resistance was found to vary linearly with temperature over

the temperature range encountered in the tests. An oven calibration gave

(R')w = (R')o[l + aT(Tw - To)_

with (R')o equal to about 30 ohms at 23 ° C (the exact value differing
from probe to probe, depending on the length of the measuring section)

and aT = 0.00332 per oc, also at 23 ° C.

The wire current of 0.i00 ± 0.001 milliampere was supplied by a

1.3L-volt mercury cell in series with dropping resistances and was meas-

ured by observation of the potential drop across a 30.O-ohm resistance.

This potential drop and also that across the measuring section of the

free,molecule probe were measured with a Rubicon hand-balancing potenti-

ometer and a Leeds and Northrup galvanometer. The combined potentiometer-

galvanometer system had a resolution of better than i microvolt (0.i micro-

volt could be estimated), which is about 0.5 percent of the probe potential

change between upstream and downstream limits of the weakest shock wave

tested. Alinement of the free-molecule wire parallel to the plane of the

shock-holder entry was accomplished by adjusting the wire supporting frame

and by bending the heavier "tails" of the wire leads. The alinement was

checked before and after the tests, and it was estimated that the maximum

misalinement error was not greater than about 0.003 inch over the length

spanned by the measuring section. If it is assumed that this misalinement
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only causes the wire to read the average signal_ of a perfectly alined wire
over a O.O015-inch-travel through the shock, o_ie can demonstrate graphically
that this produces no significant change in the measuredshock profile.

Wire-Traversing Arrangement

The wire setup, shownin figure 2, is ess,mtially the sameas the
system described in reference !. The wire was movedby a small electric
motor; its position was indicated by a l-inch--_ravel, O.O001-inch-reading
Amesdial indicator.

Flow Visualization

Unfortunately, an extremely bright afterglow in argon was discovered
only after the program was completed and, cons,_quently, did not contribute
to the exploratory phases of the experiments. However, pictures were
obtained with it (fig. 3) which confirmed, a posteriori, certain important
conclusions about shock placement and shape which had been formed from
observation of wire-temperature traces.

Gas Supply

The argon used for the tests was supplied by Linde Air Products Co.
and was guaranteed to be 99.9 percent pure. I_ was introduced directly
into the wind tunnel without additional drying or purification. Someair
leaks into the wind tunnel, of course, and maymix with the argon in small
amounts. What one fears is the presence of an impurity of a molecular
weight very different from that of the test ga_ in sufficient amount to
add diffusion to the dissipative mechanismsbrc_adeningthe shock. It can
be sho_n theoretically (e.g., ref. 4) that i pc_rcent of air in argon, a
very liberal allowance for possible leakage, produces less than i/2 per-
cent shock thickening by diffusion.

EXPERI_NTAL RESULTS

Free-Stream Probe Readings and Radiation Corrections

Initial measurementswere madewith the free-molecule probe in the
uniform stream at the Machnumberschosen for the final shock-wave test.
These data are shownin figure 5. The wire-tergerature readings fell
consistently below the theoretical values giveIL by the analysis of ref-
erence 5. On exmnining the possible reasons f(_r the discrepancy it was
found that the losses due to heat conduction were small but that a sizable
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loss might be expected from radiative heat transfer. An acceptable fit

to all the free-stream data was obtained with a value of Co/_ = 0.13

where co is the emissivity of the wire at room temperature and _ is

the thermal accommodation coefficient of argon on tungsten (see

appendix A).

The existing experimental arrangement did not permit accurate inde-

pendent determinations of the quantities co and _. However, the cor-

relation between free-streamMach number and probe temperature, using

the single value Co/_ = 0.13, was sufficiently good to warrant acceptance

of this value as an accurate calibration constant for the probe.

It should be noted that the formula for free-molecule-flow convective

heat transfer given by equation (A2) of reference i is in error. The cor-

rect formula is given by equation (A_) of this paper.

Shock-Wave Profiles

The principal results of the experiments are shown by the data points

plotted in figures 6(a) to 6(d). In these figures the ratio of the meas-

ured wire temperature Tw to the measured stagnation temperature T o is

plotted against the nondimensional space variable y. This nondimensional

length is related to the physical distance x of the shock-wave traverse

by

y_ 4 cx (i)
35

in which c is the shock strength introduced by Grad (ref. 6) and is

defined in terms of the initial Mach number M I by

(2)

and _ is a reference length pertaini_ to the value _. of the vis-

cosity at the temperature T. - 2 To = _ T o . It is defined by
y+l

pu
(3)
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The value T. - 2
y + I To corresponds to the va_ue of the gas temperature

at the sonic point of an adiabatic flow having _otal temperature To .

The major difference between the method used here to present the data

and that employed in reference i is that in this report the data have not

been "normalized" so as to make the downstream end points of the shock

wave agree with theory. The normalization technique used in reference i

is open to some criticism; although it does not alter the maximum-slope

thicknesses of the shock waves, it obscures so_ features of the data.

THEORETICAL CALCULATIONS

The theoretical procedures for finding shock-wave profiles in terms

of the temperature of a free-molecule wire with no radiation or metallic

conduction losses are given in detail in reference i for the Navier-Stokes

and 13-moment equations. Extensions af these p_ocedures to correct the

predicted profiles for radiation losses and to include use of the Burnett

equations are given in appendixes A and B of th_ present report. The fol-

lowing paragraphs will review, for convenience_ only the basic philosophy

of the theoretical approach.

The confutation of free-molecule-flow ener_y transfer to the wire

requires knowledge of the distribution of molecllar velocities at the

wire location. Thus, the initial object of the analysis is to find the

molecular distribution function f at each poii_t within the shock wave.

For the calculations discussed here f is ass_aed in the form of a local

_laxwe!lian distribution skewed by the viscous s_ress and heat fluxj that

is_

i q[Ci '''_C2 l_i
f(_x) n e-C 2 Pi_ CiCj +

(e ST)3/e p
\

I

In thi_ C is the peculiar molecular velocity absolute velocity
\

-x Vminus mean flow velocity u } divided by 2RT.

u_ p, T, Pij' and qi) are functions of x.

(4)

All the parameters (n_

If this distribution function is substituted into the Boltzmann

equation and the moments of that equation taken with respect to i, _i'

and _ _i _ one obtains the familiar conservation equations of fluid2 i'

mechanics. These equations initially form an indeterminate set because

L_f _he explicit appearance of the stress- and hsat-flux variables. The

problem at hand is then threefold: (i) The conservation equations must

be supFlemented to yield a determinate set_ (2) this set must be solved
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for the shock-wave boumdary-value problem, thus determining n, u, and

so forth as functions of x, and (3) the distribution function, now known

as a function of x, must be applied to calculate the wire-temperature

shock profile.

The three theories used here differ, for the immediate purpose, only

in the way they supplement the conservation equations to find a determi-

nate set. Two basic kinetic-theory methods are involved, these being the

Chapman-Enskog method and the Grad method. The Chapman-Enskog method

yields first the Navier-Stokes and then the Burnett expressions for vis-

cous stress and heat flux, as successive approximations in a series

expansion in the mean free path. The coefficients of this series involve

only n_ u, T, and their spatial derivatives (ref. 7). The Grad method

relates Pij and qi to n, u_ p_ and T by taking higher order

moments of the Boltzmann equation. This introduces further unknown vari-

ables, and the heart of the Grad method is the choice of some physically

sound way to truncate the procedure. The truncation which corresponds to

the simple distribution function (4) yields the 13-moment equations, in

which Pij and qi appear explicitly (ref. 8).

The differential equations to be solved for the shock-wave structure

are thus the Navier-Stokes equations, Burnett equations, and 13-moment

equations. Previous authors, notably Grad (ref. 6), Gilbarg and Paolucci

(ref. 9), and Zoller (ref. i0) have indicated how these equations may be

integrated numerically, and their methods were applied quite directly.

Once the distribution function is determined throughout the shock,

it is used to compute the wire temperature according to the procedures of

Bell and Schaaf (ref. ii). I For the present range of shock strengths it

is sufficient to use the approximate form of their result

Wa_

-  o(s)+ Hl(S) + H2(s)PYY+ 3(s)qx
p pu

iThis method makes use of the Grad distribution function, in which

Pij and qi enter as parameters. The Grad distribution function is

valid for both the 13-moment and Navier-Stokes equations. However, the

Burnett distribution function contains higher order terms in the peculiar

molecular velocity C, which possibly makes a significant contribution to

the wire temperature, but to the authors' knowledge, the explicit form of

the complete Burnett distribution function has never been worked out.

The procedure employed in this report was to calculate B,_rnett wire-

temperature profiles using the Grad distribution function, with values

of Pij and qi obtained from the Burnett shock-wave solutions. No

quantitative estimate of the error involved in this procedure is avail-

able at the present writing.
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for a wire lying along the z-axis with flow in the x-directlon. In this

equation, the Hi(s ) are functions of the molezular speed ratio,

s = u/_-_, as given in reference ii. For a on_-dimensional flow of a

#

monatomic gas the Stokes relation

Pxx + Pyy + Pzz = 0 (6)

is valid, as is the equation

i

Pyy = Pzz : -[Pxx

regardless of the particular form employed for Pxx when the flow is in

the x direction.

Finally, since radiation heat losses were obviously important in

these experiements, the theoretical curves were corrected for these losses

by the method of appendix A. It is interesting to observe that the radia-

tion losses cause a decrease in maximum shock slope, as seen in the wire-

temperature profile, but cause virtually no change in measured shock

thickness.

The recent kinetic theory of Ikenberry and Truesdell (refs. 12 and 13)

has not been used in this report but is currently being applied to the

shock-wave problem by others. Mott-Smith's theory, used in reference i,

was judged too unsuccessful in that work to be employed again here.

The particular calculations which were made are listed below.

(i) Navier-Stokes theory: Tw/T o profiles were calculated for

M I = 1.335, 1.454, 1.576, and 1.713 by numerical integration, using the

viscosity-temperature law given in reference 14. These profiles are shown

in figures 6(a) to 6(d), respectively. The velocity profile at M I = 1.576

is shown in figure 7(a); here w is the nondi_ensional velocity defined in

equations (BIB).

(2) 13-moment theory: Wire-temperature profiles were calculated for

Maxwellian molecules at M I = 1.335 and 1.576 . These are shown in fig-

ures 6(a) and 6(c), respectively. Velocity profiles for M I = 1.576 and

1.713 are shown in figures 7(a) and 7(b), resrectively. The 13-moment

profiles become double-valued for M I > 1.65.

(3) Burnett theory: Wire-temperature profiles were calculated for

Maxwellian molecules at M I = 1.342, 1.454, I.Z76, and 1.732. These are

shown in figures 6(a), 6(b), 6(c), and 6(d), respectively. The velocity

profiles for M I = 1.576 and 1.732 are shown _n figures 7(a) and 7(b),

respectively.
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(4) Effect of viscosity-temperature law on theoretical profiles:

In addition to the calculations listed above, a Navier-Stokes profile

for Maxwellian molecules was calculated for M I = 1.713, and a 13-moment

profile for the empirical viscosity law _ = _(T) was calculated at

M I = 1.576. These profiles were compared respectively, with the Navier-

Stokes _(T) profile at M I = 1.713 and the 13-moment Maxwellian mole-

cule profile at M I = 1.576 . When these profiles are drawn with y or

x/L. as the dimensionless distance variable, the maximum slope is
virtually independent of the viscosity-versus-temperature law (the point

at which T = T. is usually very close to the point of maximum slope).

The Maxwellian molecule profiles are slightly steeper upstream of the

maximum-slope point, and more gradual downstream, than are the _ = _(T)

profiles. However, the differences are too slight in the present Mach

number range to be seen in figures 6(c) and 6(d). Had X/Al, with A I

the mean free path upstream of the shock, been used as abscissa, a notice-

able difference between these profiles would be seen. Then the Maxwellian

molecule profile would be the thickest of the family obtained from the

viscosity laws _ _ T_ (0 _ _ _ i).

DISCUSSION

Agreement Between Data and Downstream

Rankine-Hugoniot Conditions

It is seen from figures 6(a) to 6(d) that, except in the case of

the MI = 1.713 shock wave, the downstream end points indicated by the

data are considerably higher than the theoretical curves. Higher values

of Tw/T o correspond to higher Mach numbers, and the data indicate that

the pressure rise through the shock waves was not so great as that pre-

dicted by theory. These discrepancies are probably due to the influence

of the shock holder. In all the shock waves tested a region of reaccelera-

tion followed the leveling-off region of the subsonic tail. Apparently

the lower pressures in the accelerating subsonic flow within the shock

holder propagate upstream into the subsonic tail of the shock wave, broad-

ening and weakening it. The effect is less pronounced for stronger shock

waves, as evidenced by the better agreement found here at higher Mach num-

bers and also by comparison with Sherman's helium data. (The effect men-

tioned above was found, to a lesser extent, also in Sherman's tests but

it is not so apparent in the normalized profiles.)

Comparisons With Various Theories

Of the theoretical curves shown in figures 6(a) to 6(d), those found

from the Navier-Stokes equations seem to fit the data best, particularly
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in the upstream half of the shock wave. There is, howeverj little choice

between this fit and that afforded by the Burnctt equations_ indeed the

latter equations seem slightly more successful in the downstream half of

the shock. This last fact is not too significEnt, because of the previ-

ously mentioned possibility that the downstream tail of the shock may be

distorted to an unknown degree by the failure to produce experimentally

the proper downstream boundary condition. The 13-moment equations give

a definitely inferior fit to these profiles.

The rather close coincidence of the Navier-Stokes and Burnett pre-

dictions came as a surprise to the present autO:ors, largely because a

casual reading of Zoller's paper (ref. i0) had left the impression that

he had already integrated the Burnett equation_, finding results consid-

erably closer to those of the 13-moment method than to those of the

Navier-Stokes method. In fact, Zoller's basic equations do not arise

from the Chapman-Enskog method, and while they are quite similar to the

Burnett equations (as given in up-to-date form in ref. 15) they are

evidently significantly different when applied to the shock-wave prob-

lem. Mrs. Chang's calculations with the correct Burnett equations

(ref. 16) failed to warn of this fact because cf their poor convergence.

On the other hand, Grad reexpanded her results and gave, in a note "added

in proof" to reference 6, approximate formulas which predicted that the

relative shock-wave thicknesses according to t_e three theories consid-

ered here would be just about as we have found them numerically.

Various authors have suggested that an approximate solution by

series-expansion techniques is most appropriat_ to the Navier-Stokes,

Burnett or 13-moment equations, since these equations are themselves

derived by series methods applied to the Boltznann equation. Good

examples of this method are found in references 16 and 17.

As was done by Wang Chang (ref. 16) a ser_es solution was con-

structed for the shock-wave problem, for the B_rnett equations, and for

the "third approximation" equations which contsin, in addition to the

Burnett terms, the linear third-derivative terns which arise from the

next Chapman-Enskog approximation. The expansion technique was that

suggested by Grad (ref. 6, p. 284) carried to crder c2, at which stage

the first contributions of the third approximation appear. These cal-

culations verified Grad's formulas for the shock-wave thicknesses

(ref. 6, p. 300) and provided the associated s_ock profiles. While the

series solution of the Burnett equations, carried only to this degree

in ¢, did not agree closely with the computing-machine solutions, it

is believed that the series results predict the correct qualitative

effect (a further thickening of the shock) of the third-derivatlve terms.

The point which appears significant is that successive approximations in

the Chapman-Enskog scheme seem to move the theoretical predictions far-

ther from, rather than closer to, the experimental data. In this connec-

tion it is interesting to recall that the Burnctt equations can be
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obtained by iteration on the 13-moment equations (ref. 18, p. 258). If in

this sense the Burnett equations are regarded as approximations to the

13-moment equations, the fact that the 13-moment equations predict thicker

shock waves than the Burnett equations is consistent with the aforemen-

tioned effect of higher-order approximations in the Chapman-Enskog scheme.

There seems to be no satisfactory explanation of the observation that

presumably more accurate solutions of the Boltzmann equation fail to yield

increasingly accurate predictions of the experimental data. The following

possibilities can be suggested: (i) The Boltzmann equation is correct_

but existing series methods of solving it are very slowly convergent or

perhaps only asymptotic} (2) the series solutions are adequately conver-

gent, but the Boltzmann equation itself is inapplicable in shock waves

of moderate strength} or (3) both the Boltzmann equation and these methods

of solution are wrong for this problem. At least_ a clear indication that

distribution functions of the form given in equation (4) are not correct

for all shock strengths is exhibited in reference 19. There these func-

tions are shown to become negative in certain ranges of molecular velocity

for shock waves only slightly stronger than those investigated here.

This is an obvious violation of the definition of a distribution function.

Maximum-Slope Thickness

Most investigators of shock-wave structure have used the Prandtl

maximum-slope velocity thickness as a means for comparing the results

of different calculations. In units of y, this velocity thickness is

defined by

or, in units of x,

u2 - Ul- (7)

_ 35L, (8)
4_

This is, of course, only one of several maximum-slope thicknesses that

can be constructed. For instance_ temperature or density thicknesses

can be determined from the shock-wave solution, and from the experiments

performed here wire-temperature thicknesses can be obtained. Most of
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the theoretical shock-wave analyses have been presented in terms of

velocity thickness; therefore it will be advantageous to represent the

wire-temperature maximum-slope-thickness data an terms of equivalent

velocity thicknesses.

It may be remarked that a maximum-slope thickness (of any of the

quantities, velocity, temperature, etc.) is not a particularly good meas-

ure of the prediction of a given theory, since it depends on a purely

local property of the shock wave. Conceivably; two different theories

could predict similar maximum-slope thicknesse_ yet give profiles which

were markedly different in shape. Both Grad (ref. 6) and Gilbarg and

Paolucci (ref. 9) have remarked on this, and Grad introduced an "area

thickness" which reflects better the overall sl.ape of the profile than

does the maximum-slope thickness. However, the area thickness is a

rather awkward quantity to use, so the maximum-slope thickness has been

employed here.

The experimental wire-temperature thicknesses _(TW)!exp, obtained

by drawing a maximum-slope line through th_ da_ a, were transposed to

experimental velocity thicknesses through the correspondence

(9)

This ratio ran from i to about 1.07 as M I increased from 1.34 to 1.73,

according to the Burnett theory, for which the most detailed profiles

were calculated. Maximum-slope shock thicknesses transposed in this

fashion are shown in figures 8 and 9 and tabul_ted in table I. In the

figures they show ranges of ±5-percent error, _hich are felt to give a

fair estimate of the accuracy with which the e_perimental maximum slope
could be found.

Comparison With Other Experimer tal Data

There still appears to be just one other _ource of experimental

data on shock thicknesses, the work of Hornig End his colleagues at

Brown University (currently being continued at Princeton). This

utilizes the optical reflectivity technique, ir which light of a wave

length chosen nearly equal to the anticipated Ehock thickness is inter-

cepted obliquely by a shock traveling down a t_be. Given a theoretical

density profile, and hence an index-of-refraction profile for the shock
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wave, one can compute its reflectivity for light of a given wave length

and angle of incidence. The theoretical result is mostly sensitive to

the ratio of shock thickness to light wave length and comparatively

insensitive to the detailed shape of the density profile. Hence if a

reasonable profile shape may be assumed, the calculation may be performed

with the shock thickness carried along as a scale factor_ to be determined

empirically by matching predicted and observed reflectivities. This work,

including some recent and refined data on shock thicknesses in argon_ has

been summarized by Hornig in reference 20. Results shown in figures 8

and 9 agree remarkably well with the present data, considering the com-

pletely different experiments. Unfortunately, the data in reference 20
attributed to Talbot and Sherman contained a small calculation error when

supplied to Dr. Hornig. The fact that Hornig's data and the present

results agree better in figure 9 than in figure 8 is not an accident.

The viscosity of argon is very poorly represented by _ _ T_

(_ = Constant) over any considerable temperature range. In the present

investigation wind-tunnel data T. _ Constant = 225 ° K, and _ _ 0.9,

while in Hornig's data, T I _ Constant = 300 ° K, and _ _ 0.8. Fig-

ure 8 gives the truer comparison of these two sets of data since _m/L.

is virtually independent of moderate change_ in the viscosity-temperature

law.

CONCLUDING REMARKB

The profiles and thicknesses of normal shock waves in argon at Mach

numbers of 1.335, 1.454, 1.576, and 1.713 were determined experimentally

by means of a free-molecule probe whose equilibrium temperature is

related by kinetic theory to the local flow properties and their

gradients.

Comparisons were made between the experimental shock profiles and

the theoretical profiles calculated from the Navier-Stokes equations,

the Grad 13-moment equations, and the Burnett equations. New, very

accurate, numerical integrations of the Burnettequations were obtained

for this purpose, with results quite different from those found by

Zoller, to whom the solution of this problem is frequently attributed.

The experimental shock profiles were predicted with approximately

equal success by the Navier-Stokes and Burnett theories, while the

13-moment method was definitely less satisfactory. A surprising feature

of the theoretical results is the relatively small difference in pre-

dictions from Navier-Stokes and Burnett theories in the present range

of shock strengths and the contrastingly large difference between pre-

dictions of the Burnett and Grad theories. It is concluded that the

Navier-Stokes equat ions are correct for weak shocks and that within the
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present shock-strength range the Burnett equations makeno improvement
which justifies the trouble of solving them. _or shocks of substantially
greater strength, it remains fundamentally doubtful that any of these
theories can be correct.

University of California_
Berkelej, Calif., January i, 1958.
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APPENDIXA

FREE-MOLECULE-PROBEHEATLOSSES

Radiation-Convection Heat Balance

Consider first a probe in a uniform stream. The probe has an equi-
librium temperature Tw which is less than the adiabatic equilibrium
temperature Taw. Heat is transferred to the probe by convection and is
lost from the probe by radiation. (For the time being, conduction losses
and i2R heating will be neglected.)

A heat balance for the probe is, per unit length,

2hc_rc_(Taw- Tw) = 2_rG(¢wTw4- coTo4_\ (AI)

in which cw is the emissivity of the wire at temperature Tw and eo
is its emissivity at the surrounding temperature To. For a pure metal_

,w/Co= Twpo (ref.21), so

w oolo  j
If this equation is used to correlate the free-stream equilibrium-

temperature data, with

- i + s2)l 0 + s211 (A3)

then it is found that the single value Co/_ = 0.13 gives a curve for

Tw/T o which passes through all of the data points, as shown in figure 5.

In this figure, the Taw/T o curve was calculated from the functions

given in reference 5-

The value Co/_ = 0.13 seems to be rather large. A typical value

for the emissive power of tungsten at room temperature is co = 0.03,

and values cited in reference 22 for the accommodation coefficient of

argon on tungsten range from _ = 0.57 (clean tungsten) to _ = 1.0
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(surface saturated with argon). However_it is not clear whether the
above values apply for the situation at hand. ]'or example, there was
undoubtedly a layer of adsorbed air on the wire and also the surface
condition of the wire, which affects both co and _, was unknown. In
addition, the wire geometry itself was rather complicated, since it was
constructed with two copper-plated lap joints _ the potential lead junc-
tions, and these double-strand joints makeup _most 20 percent of the
measuring span. Because of these aforementioned uncertainties_ it seems
most reasonable to accept the value Co/_ = 0.I!; simply as a calibration
constant and to refrain from more specific inte:'pretation.

Estimate of Conduction End _)sses

The full heat balance for the wire; includLng conduction and current
heating but neglecting changes in resistance ant. conductivity with tem-
perature, is

B_¢oTo 4 Tw _ + _(T_w - Tw)

Kr [<To/

i2R,
+ - o (A4)

_Kr 2

The boundary conditions at x = 0 are_ with x = 0 taken at the

center of the wire span_

and, at x : +Z,

dTw
-0

dx

Putting

T : T o

Tw : To(I + t)

Taw : To(l + taw)
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equation (A4) may be linearized and solved, with the result

t = (Ag)
c2 cosh

where

b __

2hc_t aw i2R '

Kr xKr2To

C

Kr

2hc_
+

Kr

For a numerical example_ consider the conditions which were obtained

at MI = 1.713 in the free stream. Take

= 5.6733 × 10 -5 ergs/cm 2 OK sec

K = 2 x 107 ergs/cm OK sec

r = 3.17 × 10 -4 am

To = 296.5 ° K

i = i × 10 -4 amp

R' _ 15 ohms/cm

= o.oo332/oK

h c = 1.51 × i0 _ ergs/cm 2 OK sec

Co/_ = 0.13

_=i.0

Taw/T o : 1.221

taw = 0.221
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Then, c = 2.25 cm-I and b - 0.2075. It is found also that the effects
c2

of i2R' heating are negligible. The most di_ficult thing to estimate
is the effective half length Z between the wire center and the assumed
end-point heat sink at temperature To. In th._ actual tests the current
and potential leads spanned about 19 centimeters. However, only about
i0 centimeters of this span was immersedin th._ uniform stream, the

centimeters on each end being in ;he nozzle boundary layerremaining

and outside the jet. It is knownalso that th_ equilibrium temperature
of the wire within the boundary layer is actually higher than it is in
the uniform flow, so there is in fact somehea; input to the wire in
these regions. Since only an estimate of the _onduction effect is
needed, the rather pessimistic choice cZ = i0 is made. Then,

! cosh 2.25_!It _ 0.2075 - _,_ -/

The measuring span of the wire was about __centimeters, so with
x : i_

(A6)

(t)x= I _ 0.2070 (A7)

Even if the conduction losses are doubled to azcount for heat flow out
the potential leads, it is evident that these Losses are still negligible,
since the difference between the center-point temperature and the tempera-
ture at x = i is, from equation (A7),

(Tw)x=0 - (Tw)x=I _ O.001(Taw- To) _ 0.065° C

Note that the center point temperature ratio with correction for
radiation obtained from this linearized calcul_tion is

TI_)x=o : 1.2o75

which is quite close to the exact value obtained from equation (A2)

for the flow conditions chosen.
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Radiation Corrections to Theoretical Shock Profile

For comparison with the experimental results 3 the calculated Taw/T o

profiles were corrected, point by point, for radiative heat losses. The

heat-transfer coefficient which is appropriate to a nonuniform flow was

taken from reference ii and is

hc- _s (i + s2)I 0 + s2Ii + 4--_ 0 - ll +

4p o\2 ] qxio )_szl j5pu
(A8)

This heat-transfer coefficient and the value go/_ = 0.13 were employed

with equation (A2) to obtain the corrected 'profiles.
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APPENDIX B

INTEGRATION OF BURNETr EQUATIONS

The Burnett equations for one-dimensional flow are nearly identical

to those integrated for a shock wave by Zoller in 1951. Zoller's method

of integration is so thoroughly presented in reference i0 that it was

quite simple to set up the Burnett equations fcr the solutions described

here by merely copying his procedures. This wes done, as follows.

The three conservation equations for one-dimensional steady flow of

a fluid are

u2 + p + Pxx) : 0 > (_i)

_-- u + l_u + u(p+ Pxx) + c
dx 2

=0

in which p is the mass density, u, the flow velocity, p, the pres-

sure, E, the internal energy, qx# the x conponent of heat flux, and

Pxx, the x component of excess viscous presstre. For a perfect mon-

atomic gas,

E = RT1 (B2)
p = pET

The differential system of equations (BI) may _e integrated once to yield

1pu = m

pu2 + P + Pxx = P

pu3 + 5pu + 2PxxU + 2qx = (!

(B3)

where P, Q, and m are constants of the flov.
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The viscous stress Pxx may be expressed as

i!

Pxx = Pxx' + Pxx (B4)

with Pxx' -

the heat fl_

4 du
- - -- _ --, the familiar Navier-Stokes expression.

3 dx

qx may be written

Similarly,

I!

qx : qx' + qx (B5)

dT
with qx' : -k dx---'the Fourier heat-conduction law.

Wang Chang and Uhlenbeck (cited in ref. 15) give the currently

accepted expressions for the Burnett stresses and heat flux_ which reduce

for one-dimensional flow to the following equations:

= + + + +-- 2+ ,,_,_-

_[du '2

(136)

The values of the constants

: 10/3

_2:2

_4:0

_5:3

_6:8

ei and _i are, for Maxwellian molecules

ez : 75/8

e2 : -45/8

e3 = -3

e4 : 3

e 5 : 117/4
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These numbers are now introduced, and the continuity equation and

equation of state are used to eliminate the pressure and density vari-

ables. This gives the following set of six equations for six unknowns:

mET ,,
mu+--+ ' + =P

u Pxx Pxx

tl It

mu 2 + 5mRT + 2U(Pxx' + Pxx ) + 2(qx' + qx ) = Q

4 du
PXX' = ---_--

3 _x

qx' : -k dT
dx

O - u + + +

-xx 27 mRT 3 _u\_ 7 3 m dx2 3 mT dx dx

2 _2 u d2T

3 m T dx 2 +2 _2mT2-u (_)2

,,_ 9__2u dudT 7 _2u--+2d%_21___)2qx
8 m T dx dx 4 m dx 2 m\dx

(B7)
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The dimensionless variables suggested by Zoller are

mu
v -

P

P

Pxx ' UPxx '

p mRT

Tr TI

Pxx UPxx
T! --

p mRT

4 qx' U
_, -

mRT

4 qx" U

5mET

z =3T2mx_

8

mQ
a -

p2

(B8)
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In these variables, the system of equatiors (B7) becomes

2v2 - 2v + T2(I + _' + _") = 0

v2 + T2 + _, + _,, _ 5 !(_, + _" --a
4v

/

8 dz _ _v dz \6

d_' 27 19
_,, = _ _63 TV T(_') 2 + -- 9'_'

160 dz 32 v 8

(B9)

The fourth of these equations involves the ass1_ption that the Prandtl

number is 2/3, which is satisfied exactly by M_well molecules and is

nearly true for all pure monatomlc gases.

If in equations (B9) the first two member_i are used to eliminate

_" and _" from the last two members, a little rearranging of terms

then leads to the following set of four first-(,rder, nonlinear, ordinary

differential equations

dT _4 _'

dz 9 v

d_' _ 160 R2
dz 63_v

d_' _ 6 RI _ 4OR2

dz Tv 7v2

(BIO)
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in which

R1 =
2v - 2v2

T2 I¼"r _ ,)2 1 T h,_, 14(. )2
- l - _' + -- - (_ + ....

6/ 6v
(BLL)

The quantities Tw and Vw_ which appear in R2_ are the boundary

values of T and v far upstream or far downstream of the shock, that

is, at z = _. At these locations the stress and heat flux are pre-

sumed to vanish, so that the first two members of equation (B9) can be

quickly solved for Tw and vw in terms of a, the shock strength

parameter. This gives first

2vw2 - 2v w + my 2 = 0 1

vw 2 + _ mw 2 = a
2

(B12)

The index w will be given the value 0 to indicate conditions far

upstream of the shock (z = -_), and v = i to indicate downstream

conditions.

Since the boundary conditions are specified at the singular points

of equations (BI0), a special investigation of the solutions in the

vicinity of these points is a prerequisite for numerical integration.

For this purpose one sets

v =Vv + _ 1
T = TW - _

\

q' = _' r

J

(BI3)

where _; 0, _', and {' are quantities negligible to any order higher

than the first in the vicinity of the singular point. Next one assumes
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: _eT_Z

: _ekZ

_, : Wehz

_' = Ke)kz

(Bl_)

Then there is obtained from equations (BIO) the set of linear algebraic

equations

V V

4[-
9 Vv

xg- 16o _6}TvVv Tv

\

12 vv _ _

5 Tv2 7

- f_ 12 vv _ _

_ - 6 -_2 "_ - 2--_(2Vv - 1)_-'rvVv v "rv" 7v_(4 rv 5 "rv 2

(BI5)

which has nonzero solutions only if X satisfies the characteristic

equation

189Vv6(i - Vv)_i 4 - 1080Vv4(l - Vv)3"h3 + 2328Vv3(i - Vv)2X 2 -

96vv(l - Vv)(38v v - 15)_ + 256(8Vv - 5) = 0 (BI6)

From the four roots of this quarticj one which neets the requirements of

physical reality can be selected for each value of v. The requirements

are that the real part of _ be positive for v = O(z = -_) and nega-

tive for v : l(z = _) and that _ _0 as v0 _v I _5/8 (that is, as

the shock strength vanishes).



When k is a root of equation (BI6) the first three membersof
equations (B15) can be solved for the ratios @/_, _/_, and _/_,
yielding

I

!

.\ - 72o v(i

= -Vv_

9
- Vv_, " 1

(BI7)

The initial values of v, T, _, and _ are then established for the

purposes of computation by choosing the poSnt z = 0 to correspond to

some small but finite value of _. The initial derivatives at that point

can then be found from equations (BI0) or by differentiating equa-

tions (BI4). The two methods will give nearly the same numbers if the

starting value of _ is sufficiently small.

To insure the stability of machine integrations, one must determine

by examination of the roots of equation (BI6) whether to start near the

upstream limit of the shock and integrate downstream or vice versa. The

real parts of these roots are plotted versus vv in figure i0.

At v = i (0.25 _ v w _ 0.625) there are either four real roots,

three positive and one negative, or two real roots of opposite sign plus

a pair of complex conjugates with positive real part. The physically

acceptable root is the negative real one. This singular point is of a

saddle-point type and is ideal as a starting point for numerical

integration.

At v = 0 (0.625 _ v v _ i) the singular point has a variety of

types, none of which are suitable for the initiation of numerical integra-

tion. These types dictate qualitatively the behavior of the numerical

solution as it approaches its upstream limit. Thus, for 0.625 <= vw _< 0.80

the solution will come in monotonically, for 0.80 _ v w _ 0.94 a damped

oscillatory approach can be expected, and for 0.94 _< vw <= i this oscil-

lation may amplify rather than damp out. This behavior has been qualita-

tively confirmed by the computing machine, which also indicated that up
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to Mach 2 the oscillations encountered are so _.mall as to be barely

noticeable.

Integrations were consequently started from downstream, with the

arbitrary choice _ = 0.001, and proceeded toward increasingly negative

values of z. They were performed on the NAREC digital computer of the

Naval Research Laboratory_ Washington_ D. C. Numerical experiments

confirmed that, with a Runge-Kutta third-order integration method

(ref. 25) and integration steps equal to about 0.025 times the maximum-

slope shock thickness, the results were independent of further reduction

of step size to an accuracy considerably greater than that required here.

The results also showed a high degree of independence of small variations

in the initial derivative data_ as would be expected of an integration

starting out of a saddle point. These computations were programed and

supervised by Mr. John L. Hammersmith of NRL_ to whom the authors are

greatly indebted.

To express these results in the nomenclature used elsewhere in this

report_ the molecular speed ratio s = v/T and the following relations

were necessary:

Pxx 2v - 2v 2

P T2
i

qx a - 2v + v 2 3

pu T2 2

c : V_ - 16a (Grad's shock-.;trength
parameter )

Y 1575

2 6\ 2 j (z)

8v -
W -

E

(BI8)
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Figure 2.- Shock holder and wire-traverse mechanism.
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